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Complex Numbers Cheat Sheet Edexcel Core Pure 2

This chapter aims to build upon the complex numbers you learnt in Core Pure 1. We will look at Euler’s formula and De -resources-tuition-courses
Moivre’s theorem; two powerful ideas which will lay the foundation for most of the techniques you will encounter in (505%4. isin%f)‘* . . ) ) e
this chapter. Complex numbers themselves have an unexpectedly large number of applications in the real world, such Example 4: Evaluate  —— " ———=— . giving your answer in the form x + iy, where x,y € R. Notice that the result we want to Shov‘l/ ha? 2 Sm_(?) in the o st e 1aie e 1m0
as the modelling of quantum waves in Physics to the representation of alternating current in Electrical Engineering. (Casl_3 + lSl"T3) denominator. And recall that sin 6 = ;(319 —e )50 ezez (e 2 —ez2) e6i0 (e7z —e2)
7 7 28 28 ] o -0 . . = - = - -
Use De Moivre’s theorem with the numerator: (cos—n + isin—n)“ = Cos_n + isin—n 2isin (;) =e2 —ez Soif we multiply the top and bottom by e%w(l _ eie) e%w _ eg
Exponential form of complex numbers 13 13 13 13 i s o o
. . 41 47 241 241 e z,wegetez — ez on the bottom, which is equal to
In Core Pure 1, you learnt that the modulus argument form of a complex number z is z = r(cos 8 + i sin 8), where Use De Moivre’s theorem with the denominator: (coS— + i Sin—=)° = cOS — + i Sin—— Jisi (g)
r = |z| and arg z = 6. You can use Euler’s formula to express a complex number in an exponential form: 13 13 13 13 s = = = =
- 1 1 1 - 1
66 66
0 o cos%+isin% The denominator is now equal to —2i sin (ﬁ)_ Multiplying the top “P+4i0 = e®(e7z —ez ) _e Pl —e 2
" e =cosf +isin6 So, the whole fraction simplifies to: R E— ) ; 2 - iQ = 9 = 2
24 . . 24w and bottom by —1 gives us the required result. —2isin(= 2isin (=
COS@ +1i SIHW 2 2
So the complex number z can also be written as:
o (2!1 3 @) isin 28m  24m nth roots of a complex number
. z=re", wherer = |z| andargz = 6 We can simplify this using the rule for dividing complex numbers: 13 13 13 13 Finding the n roots of a complex number w is equivalent to solving the equation z"" = w
! we divide the magnitudes and subtract the arguments. — cos (4_71) +isin (4_71)
B 13 13 ) - ) ) .
This is the exponential form of a complex number. You need to be very comfortable expressing a complex number in *  Theequation z" = w has n distinct solutions (z and w are non-zero complex numbers, n is a positive
both exponential and modulus-argument forms. The exponential form will be quite prevalent in this chapter. . L » integer).
Trigonometric identities
The following results follow from Euler’s formula and are worth remembering: You can also be expected to use De Moivre’s theorem to derive trigonometric identities. The following results are We use De Moivre’s theorem to find the roots of a complex number, along with the following fact:
important for such problems:
. sing =L (e — e-i0) . cosf =L (e + e-i9) Proof: z" = COIS(TLH) +isin(ng) (1) . z =r(cos(8) + isin(0)) = r(cos(0 + 2km) + isin(0 + 2km)), where k is any integer.
2i 2 If z=cos@ + isin#, then z = == cos(—n@) + isin(—nh) = cos(nf) — isin(nd) (II)
o . . . Adding (1) and (II) gives: To solve an equation of the form z™ = w, you should follow the process used in Example 7 below:
These results are significant because they give us a direct connection between complex numbers and the . nyl_o 0 a1
trigonometric functions. You could be asked to prove these. The proof of the first statement is given in Example 2, and z Z1n = acosn z o 2eos(nd) £ le 7: Solve th ) ‘423 =2 ing th in the f 6+ ising
the proof for the second is very similar. . Zn — = 2isinnd To prove the second statement, we would instead subtract (II) from (I). Example 7: Solve the equation z* + 2iv3 = 2, expressing the roots in the form r(cos 6 + isin ).
We start by making z* the subject: z* =2-i(2V3)
Example 1: Express the complex number z = V2 (cosz +isin E) in the form re. You could be asked to prove any of the above results. Examples 5 shows how you can use these results to prove Writing in modulus-argument fofmi 2% = 4(cos (_E) T isin (_ E))
: : 2 2 - trigonometric identities. (we could also use the exponential form)
moduus amd argumentofz el =V2, argz=3 1 :
- : 50 Taking the fourth root of both sides: — 47 _r isin (=)
Now using the exponential form Y Example 5: Express cos®0 in the form a cos(568) + b cos(36) + ¢ cos(0), where a, b and c are constants. g 7 =43 (COS( 3) + lsm( 3))
1
. ’ . : _ 1, i0 _ ,-io . ny 1 _ . —1. z+—=2cosf But remember that if we add on any multiple of 27 to the 1
Example 2: Use Euler’s relation to show that sin 8 = 2i (e e™). Using 2% + 7 = 2cosnf with n. = 1: z argument, this will also be a solution, so we add 2k to the z= ﬁ(CoS (*E + an) +isin (,E + 2kn))4
Euler’s relation states: 0 = cos 6 +ising %) " ;:gument. l:léie.sttjrr‘e to df tthls BEFORE you use De Moivre’s
. . N . 5 eorem, whnich Is the next step.
Replacing 6 with —6. Note that e™% = cos(—0) + i sin(—6) Raising both sides to the fifth power: (z + ;) = 32c0s%0 ;
cos(—8) = cos () and sin(—8) = —sin (8) e™% =cos(@) —isin(9) (1D Simplifying the argument into one fraction makes further g = ﬁ(cos (_” + 6k”) tisi (_" + 61‘”))"
; = . . working slightly easier: 3
i : e —e™ = cos6 —cosf +isin6 +ising We now focus on the LHS and expand using 1,° 1 1 1 1 1 & sIenty
Subtracting (I1) from (I): o —io > +2) =254+ 509 (1) £ 1063 (=) + 10¢2) (=) +52) (=) + —
e’ —e = 2isin@ the binomial expansion: z z) z z 7 z 72 z z3 z z% z5 . . -7 + 6km —1 + 6km
g ‘ ‘ Now applying De Moivre’s theorem: z= \/E(cos( ) + isin ( ))
- . ) 1w 12 12
Dividing by 2i sin @ =?(e‘ —e ) B . 5 n T
i We can pair up the terms that match in (z+1)> :<25+i)+5(z3+i)+10(z+1) k:O:Z:ﬁ(cos(—ﬁ)-ﬂ'sin(—ﬁ))
Multiplying and dividing complex humbers power: z z° z? z o _ 5m\ /5w
Recall from Core Pure 1 that for any two complex numbers z;, z,: These terms can all be simplified using: 5 There are four solutions in total. We use different values of k ko= 1:2 = [2(cos (E) +isin (ﬁ))
1 +1 = 2.c0s(50) + 5(2 cos(36)) + 10(2 cos(8)) that result in the argument being in the range 11 11m
’ e T ek == T ) ()
- |z,2,] = |z ]|z, 1= BN z = 2cos(560) + 10 cos(36) + 20 cos(6) . .
2 2 k=—1:z=x/§(cos(—ﬁ)+isin(—ﬁ))
. Z_1 _ 3 But fror? the second step we said that 32¢0s%6 = 2cos(560) + 10 cos(36) + 20 cos(8)
- arg(z,z,) = arg(z) + arg (z,) arg 2] arg (z,) — arg (zz) (z + 1) = 32c0s°6, so we can say that: . .
2 z Solving geometric problems
We can deduce similar results for when complex numbers are given in an exponential torm: Dividing both sides by 32: cos5 0 = LCOS(SQ) " icos(gg) " Ecos(g) The roots of a complex number when plotted on an argand diagram form a polygon. You can use this idea to solve
6 16 8 geometric problems.
If z, = r,e'% and z, = 1,2, then: S £ | .
ums ot complex series o = The nroots of a complex number z lie at the vertices of a regular n-gon which has its centre at O.
. 2,2, = Tlrzez(91+ez) Recall from Chapter 3 of Pure Year 2 that for a geometric series:
n For example, the solutions to the equation z* = 2 + i are the vertices of a square with centre 0. We will now look at the
. Z_l — 7‘_1 ei(61-6) . The sum of the first n terms is given by S,, = % roots of unity, which are useful for geometric problems:
Z T
. Y] . . a
. P ) *  The sum toinfinity is given by So, = —. = Annthroot of unity is a solution to the equation z" = 1.
Example 3: Express  /Gei® x 3¢3# inthe form x + iy, where x,y € R. T
) i You can also use these results when a and r are complex. Questions involving series will often require a lot of algebraic . If you know one root of a complex number with n roots, then you can find the other roots by multiplying by
The r.nod.ulus of the resultant complex number is found by |z| =V5,]z| =3 manipulation to achieve the final result. an nth root of unity.
multiplying each modulus. |lez\ =35
i - - . i i = . 2mi . . )
The_argument of the resultant complex number is found by argz, = 0,argz, = 30 Example 6: The series P and Q are defined for0 < 0 <mas P =1+ cos8 + cos 20 + cos 30 + -- + cos 1260 . An nth root of unity is given by @ = e 7 . For example, if a complex number has four roots then a “fourth
adding the arguments together arg(z,z,) = 46 6i9( 13i6 _13i9> Q =sinf + sin26 +sin36 + -+ + sin 126 omi
e e 2 —e 2 . . . — o
Using the modulus argument form to write the resultant = 2,2, = 3V5(cos(46) + isin(46)) N root of unity is given by w = €.
. s ) _ Show that P + iQ = —————+
complex number in the form x + iy: = 35 cos(46) + i(3V5)sin(40) 2i sin(—)
2 Example 8: The point P(\/?, 1) lies at one vertex of an equilateral triangle. The centre of the triangle lies at the origin.
De Moivre’s theorem Adding P to iQ, we can see that we are dealing with a geometric P+iQ =1+ (cos@ +isinf) Find the coordinates of the other vertices of the triangle.
You can use De Moivre’s theorem to calculate powers of complex numbers: series. + (cos 26 +isin20) + - ) )
We can use the previous line to figure out what a and r are for this ‘ This is an equilateral triangle, so the three vertices represent the three One rootis z = V3 +i "
. (r(cos 6 + isin6))" = r™(cos(nd) + i sin(nd)) geometric series. Using the exponential form where possible will Soa=17r=cos@ +isin@ = e roots of a complex number. We are given one root: In exponential form: z = 2e’s
make any manipulation a lot easier.
To find the other roots, we need to multiply by an nth root of unity. . 2mi
If we consider the exponential form, this result seems more obvious: There are 13 terms in total (since the first term is 1), so using the 1(1 - (e®)13) 1—et3® There are three roots here, so we call it a cube root of unity: Cube root of unity = e’
sum of a geometric series formula with n = 13: P+iQ = 1—e-i0 = 1 —eif . - ) A )
O\ _ o n i(no) We multiply the original root by the root of unity two successive times to 5= Ze% % e¥ _ Ze% Y
- (re ) =rve find the other two roots. Remember that the roots correspond to the T T o
: 13i0  -13i0  13i0 13i0  —13i0 13i0 tices. z=2es Xes =26 =—2i
This formula all to easily simplif ingl licated ions, like the one in Example 4 Wecanrewrite 1 — e ase’z (e7z2 —e2) ez (ez —ez) vertices
is formula allows you to easily simplify some seemingly complicated expressions, like the one in Example 4. . ) . ) =
¥ v simpiity gy P P P This is a common trick you often need to use for series questions. 1—et® We write our answers as coordinates: (=+/3,1) and (0,—2) are our vertices.
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